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INTRODUCTION 

Recent advances in AI have enabled 

remarkable progress in the design and 

optimization of messenger RNA (mRNA) for 

RNA vaccines and therapeutics. While recent 

work on mRNA design has largely focused on 

designing individual components of the mRNA 

sequence [1,2,3], designing end-to-end mRNA 

sequences presents a unique challenge. 

Specifically, designing functional mRNA 

requires joint optimization of the coding 

sequence (CDS) for a protein of interest in 

addition to the 3’ and 5’ untranslated regions 

(UTRs). 

Recently, diffusion models have emerged as a 

powerful generative framework for protein 

design [15,16] and sequence generation [17], 

for example, Ginkgo's recently released 

antibody discrete diffusion model. Building on 

these advances, we introduce mRNA discrete 

diffusion (mDD-0), a discrete diffusion model 

for the generation of mRNA sequences. The 

mDD-0 model is trained using genomic 

sequence data from hundreds of species as 

well as proprietary synthetic data. We show 

that mDD-0 can unconditionally generate 

mRNA sequences with similar sequence traits 

and predicted function to genomic sequences. 

We further demonstrate that, when paired with 

custom data generation, mDD-0 can optimize 

key functional features of an mRNA sequence, 

such as mRNA stability. The mDD-0 model 

outperforms conventional design strategies, 

such as genetic algorithms on a variety of 

metrics including predicted function, diverse 

candidate generation, and diversity from the 

training set. 

A version of mDD-0 trained on genomic data 

only is accessible through Ginkgo’s Model API 

and additional documentation is available. 

Ginkgo offers enhanced versions of this model 

and high-throughput data generation 

capabilities to fine-tune mDD-0 for your 

therapeutic payload of interest: contact us 

today. 

 

OVERVIEW OF MRNA DISCRETE DIFFUSION 
(mDD-0) 
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mDD-0 was designed to learn mRNA sequence 

features across different species. The model 

implements a unique architecture to jointly 

learn from multimodal inputs: 3’ UTRs, 5’ 

UTRs, amino acid sequences and their 

corresponding coding sequences (CDS). 

Because we incorporate training data from 

hundreds of species when training our model, 

we condition each mRNA sequence on its 

species of origin, allowing for the generation of 

species-specific coding sequences during 

mRNA design. 

Figure 1 demonstrates the model architecture 

for Ginkgo’s mDD-0 model. The model takes as 

input a 3’ and 5’ UTR, an amino acid sequence 

and a species token. It outputs a 3’ and 5’ UTR 

and corresponding protein coding sequence. 

During training, 3’ and 5’ UTR inputs are 

masked at various rates and mDD-0 learns to 

denoise each masked sequence. Amino acid 

sequence inputs are not masked, but instead 

are translated to a species-conditioned CDS in 

the model output. This allows the model to 

learn codon usage for each species. 

After training, one can use mDD-0 to sample 

synthetic mRNA sequences by providing an 

amino acid sequence, species, and fully or 

partially masked 3’ and 5’ UTRs to design 

novel, synthetic mRNA sequences. 

 

The architecture consists of different modules 

for each sequence input. The 3’ and 5’ UTRs 

are passed through BERT large language 

embedding modules that were first pre-trained 

on mammalian UTRs from 125 species. The 

Amino acid sequences use a pretrained 

ESM2-150M [4] as an embedding module, 

which is frozen during training. The species is 

encoded using a simple embedding layer. 

Embeddings for species, amino acid sequence, 

and both UTRs are then concatenated and 

passed through a lightweight transformer to 

produce a joint representation. In total, mDD-0 

has 250M parameters. 

DATASET PREPARATION 

To collect mRNA sequences across multiple 

species, we curated gene annotation and 

genomic DNA for 324 vertebrate genomes from 

the Ensembl genome database [5]. Transcripts 

were filtered to include only protein-coding 

sequences. 5’ and 3’ UTRs were parsed from 

relative positions in gene annotations. 

Sequences with invalid start and stop codons, 

invalid coding sequence lengths, or missing 

UTRs were removed. After filtering, 7,168,632 

mRNA sequences remained. Sequences were 

clustered using mmseqs2 [6] and distinct 

clusters were divided into training, validation, 

and test sets.  
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MDD-0-GENERATED MRNA SEQUENCES 
RESEMBLE NATURALLY OCCURRING MRNA 
SEQUENCES 

We first sought to understand how mDD-0 can 

be used to generate full mRNA sequences, and 

whether the coding sequences and UTRs 

generated using our model were similar to 

genomic sequences. 

To evaluate mDD-0, we first sampled full mRNA 

sequences by masking whole 3’ and 5’ UTRs of 

genomic sequences, providing only the amino 
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FIGURE 1. Architecture and training procedure from the mRNA discrete diffusion (mDD-0) model. mDD-0 contains 

four embedding modules. The 3’ UTR, 5’ UTR, amino acid sequence, and species for a given mRNA are passed through 

their respective modules to calculate embeddings. Embeddings are concatenated and passed through a lightweight 

transformer to learn the joint distribution across mRNA sequences and species. 3’ and 5’ UTRs are masked during training, 

and the model estimates unmasked nucleotides. Amino acid sequences are passed through ESM2-150M, whose weights 

are frozen, and are translated to its native coding sequence as model output. 

https://ai.ginkgo.bio/#contact
https://ai.ginkgo.bio/#contact
https://ai.ginkgo.bio/


Contact us today!  

 

acid sequence and species as input to the 

model. 

We then evaluated the quality of generated 

coding sequences (CDS) using 1212 and 818 

amino acid sequences from Homo sapiens and 

Mus musculus (mouse) genomes, respectively, 

that were held out from training. We evaluate 

CDSs using a metric called the Codon 

Similarity Index (CSI) [7], which measures how 

similar codon usage is between a given gene 

and the rest of the genes for a target species. 
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Figure 2. The mDD model predicts codon usage patterns in human and mouse transcripts. Codon Similarity 

Index (CSI) computed using (A) homo sapiens and (B) mus musculus genes for genomic CDSs and mDD-0-generated 

CDSs. As a control, we include the CSI of CDSs generated using random codon selection. For each species, CDSs were 

generated by conditioning on an amino acid sequence and species. CSI was calculated based on species-specific codon 

tables from [18]. (C-F) Comparison of codon frequencies between CDSs generated by mDD-0 or by random codon 

selection for (C) homo sapiens (R2=0.53), and (E) mus musculus (R2=0.48); and CDSs generated by mDD-0 or obtained 

from the genome for (D) homo sapiens: (R2=0.95), and (F) mus musculus (R2=0.95). 

https://ai.ginkgo.bio/#contact
https://ai.ginkgo.bio/#contact
https://ai.ginkgo.bio/


Contact us today!  

 

Figure 2A,B demonstrates that the CSI of CDSs 

generated with mDD-0 is similar to the CSI of 

native, genomic CDSs. Additionally, Figures 

2D,F demonstrate the codon frequencies of 

mDD-0 generated CDSs are similar to their 

native genomic sequences for Homo sapiens 

and Mus musculus. In contrast, Figures 2C,E 

demonstrate that codon frequencies of 

mDD-generated CDSs are less similar to CDS 

generated using random codon selection. 

These results indicate that a diffusion model 

can reliably sample CDSs similar to the codon 

usage of a specific species when conditioned 

on species and an amino acid sequence of 

interest.  

We next evaluated 3’ and 5’ UTRs generated 

with mDD-0. UTRs were fully masked when 

input to the model, while the species and 

amino sequence were provided as a prompt to 

mDD-0. 

We first observed that the GC content of the 3’ 

and 5’ UTRs generated using mDD-0 is similar 

to the GC distribution of genomic UTRs (Figure 

3). In addition, the GC content of each UTR 

type exhibits a stronger overlap with its 

corresponding genomic GC content 

distribution. For instance, the generated 5’ 

UTRs overlap more closely with genomic 5’ 

UTRs than with genomic 3’ UTRs (Figure 3B). 

We additionally evaluated UTRs generated by 

the diffusion model to determine if critical 

sequence features were retained in the UTRs. 

As an example, we found that the Kozak 

sequence, which signals the start of protein 

translation in eukaryotic mRNA [8], was placed 

in similar positions in generated 5’ UTRs as in 

genomic sequences (Figure 4A). With the 

exception of four 5’ UTRs generated with the 

diffusion model, Kozak occurrences in the 

diffusion-generated and genomic 5’ UTRs had 

the same frequencies (Figure 4B). Additionally, 

we found that neither generated 5’ UTRs nor 

genomic 5’ UTRs contained upstream ORFs, 

as instances with upstream ORFs were filtered 

out from the training data. 
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Figure 3. Distributions of GC content for 1,212 

genomic human UTRs and UTRs sampled from 

mDD-0. (A) GC content for genomic and mDD-0 

generated 3’ UTRs. (B) GC content for genomic and 

mDD-0 generated 5’ UTRs. 
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To assess generated 5’ UTRs, we used a model 

trained on ribosomal load measurements from 

[3, 9] to predict the ribosomal load (RBL) of 

genomic and mDD-generated 5’ UTRs. We first 

trained a 5’ UTR RBL model on data from [3] 

and [9] and found our model to be highly 

performant on a held-out test set of 5’ UTRs 

(Spearman = 0.87). Using this predictive model, 

we find that the predicted RBL of mDD-0 

generated and genomic human 5’ UTRs are 

similar (Figure 5A). 

We similarly assessed 3’ UTRs by comparing 

the predicted stability of genomic and 

generated 3’ UTRs. To predict stability, 

measured as z-score normalized half-life of 

mRNA, we leveraged our predictive model 

described in [1], which predicts mRNA stability 

based on the 3’ UTR sequence in the Hek293T 

cell line. We further refer to our 3’ UTR stability 

model as Delphi. Similar to 5’ UTRs, we found 

that the predicted stability of mDD-generated 

3’ UTRs were similar to that of genomic 

sequences (Figure 5B). Together, these results 

demonstrate that mDD-0 can generate CDSs 

and UTRs that are similar in sequence traits 

and predicted function to that of genomic 

sequences. 

MRNA DISCRETE DIFFUSION CAN BE 
GUIDED TO OPTIMIZE FUNCTIONAL 
TRAITS OF THE MRNA SEQUENCE 

While mDD-0 can generate CDSs and UTRs 

similar to genomic sequences, we ideally want 

to generate mRNA sequences with unique traits 

that improve existing mRNA sequences' 

stability, immunogenicity, and expression. 

Figure 5 demonstrates that even though UTRs 
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Figure 4. Distribution of Kozak sequence 

(GCCRCC) location and number of Kozak 

occurrences in the 5’ UTR for 1212 genomic 

(human) and mDD-0 generated 5’ UTRs. (A) The 

relative position of Kozak sequences found in genomic 

and generated 5’ UTRs. Position is relative to the 

upstream start codon. (B) The number of Kozak 

sequences observed in each genomic and generated 5’ 

UTR. 
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designed with mDD-0 have similar predicted 

stability and ribosomal load to genomic 

sequences, many UTRs have been observed in 

the training data that have higher ribosomal 

load and stability than human genomic 

sequences. We want to generate sequences 

that are not just similar to genomic sequences, 

but are also optimized for the traits we care 

about. 

Additionally, one burning question we had is 

whether large generative models are worth the 

effort. We previously found that genetic 

algorithms, which iteratively mutate and 

recombine known stable 3’ UTRs while using a 

predictive model for filtering mutants, designed 

3’ UTRs that translated experimentally in vivo, 

while maintaining higher diversity than 

alternative design strategies such as 

mutagenesis [1]. Therefore, we were curious 

how mRNA sequences generated using a 

generative model like mDD-0 compared to a 

simpler method, such as our experimentally 

validated genetic algorithm. 

To evaluate whether mDD-0 can generate 

mRNA sequences that optimize specific traits, 

we utilized our supervised 3’ UTR model that 

predicts mRNA stability (Delphi), [1], to guide 

mDD-0 to generate mRNAs with 3’ UTRs that 

increase the stability of the mRNA construct. 

Specifically, we generate stable 3’ UTRs using 

the same 5’ UTR and CDS present in the 

mRNA construct used in training data for 

Delphi to align mDD-0 generation with the data 

used to train the guiding predictive model. 

We coupled mDD-0 with two algorithms for 

guidance: direct preference optimization (DPO) 

[10] and Soft Value-based Decoding in 
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Figure 5. Predicted ribosomal load and mRNA 

stability (z-score normalized half-life) of 

mDD-generated UTRs are similar to genomic UTRs. 
(A) Predicted ribosomal load (RBL) of 1212 mDD-0 

generated 5’ UTRs and genomic 5’ UTRs used as 

templates for generation (human), and training dataset 

used to train the ribosomal load model. (B) Predicted 

stability of 1212 genomic (human) and mDD-0 

generated 3’ UTRs. “train” represents all genomic and 

synthetic 3’ UTRs that were included in the training 

data for Delphi. Delphi is a predictive model for 3’ UTR 

stability introduced in [1]. 
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Diffusion models (SVDD), [11]. Briefly, we use 

DPO to fine-tune mDD-0 by curating pairs of 

ranked 3’ UTR sequences (ranked by stability 

predictions, or experimental measurements, 

when available). Pairs of ranked 3’ UTRs are 

used to teach the model to preferentially 

generate 3’ UTRs with higher mRNA stability, 

while down sampling 3’ UTRs with lower 

stability. mDD-0 fine-tuned using DPO is then 

sampled from to generate stable 3’ UTRs. 

SVDD, on the other hand, guides sampling by 

incorporating a predictive model that scores 

intermediate sequences during the generation 

process, steering the generation toward 

higher-quality outputs while maintaining 

diversity. We used each method to generate 

20,000 3’ UTRs. 

MRNA DISCRETE DIFFUSION CAN BE 
GUIDED TO GENERATE STABLE MRNAS 

Figure 6 demonstrates the predicted stability of 

3’ UTRs that were generated with mDD-0 

without using a predictive model (mDD, no 

guidance) or that were conditionally generated 

using SVDD to guide generations of stable 3’ 

UTRs. We found that DPO and SVDD 

generated sequences had similar predicted 

stability (data not shown). For this reason, we 

further investigate SVDD due to its increased 

computational efficiency compared to DPO. 

We additionally include 3’ UTRs that we 

generated using our in vivo generation pipeline 

for 3’ UTRs that uses Delphi and a genetic 

algorithm [1]. Although we observed that SVDD 

and DPO generated 3’ UTRs with significantly 

higher predicted stability than unconditionally 

generated 3’ UTRs, genetic algorithms could 

more easily converge on 3’ UTR designs with 

higher predicted stability (Figure 6).  

WHEN GENOMIC DATA IS NOT ENOUGH: 
mDD-0 FINE-TUNED ON SYNTHETIC DATA 
SIGNIFICANTLY IMPROVES STABILITY OF 
GENERATED MRNA SEQUENCES 

One limitation of mDD-0 is that it was initially 

only trained on genomic sequences, 

constraining the generation of mRNA 

sequences to the known evolutionary space.  

However, Delphi is trained on a combination of 

genomic and synthetic stable 3' UTRs and thus 

diverges from the known set of evolutionary 

defined UTRs. 

To this end, we fine-tuned mDD-0 on synthetic 

3’ UTRs that were experimentally validated to 

have high stability. Figure 6 shows that 3'UTRs  

generated using fine-tuned mDD and SVDD  

(mDD fine-tuned + SVDD) have significantly 

higher predicted stability compared to UTRs 

generated using the genomic-data-only mDD-0 

model (mDD+SVDD). Using mDD fine-tuned, 

the top 3’ UTRs exceed the predictive stability 

of our experimentally validated genetic 

algorithm. Additionally, the predicted stability 

for these generated sequences is not 
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statistically different from the training data. 

These results suggest the importance of 

alignment between data used to train a 

generating distribution (mDD-0) and the 

predictive model used to guide the generating 

distribution. 

mDD-0 GENERATED 3’ UTRS MAINTAIN 
HIGH SEQUENCE DIVERSITY WHEN 
COMPARED TO A GENETIC ALGORITHM AND 
GENOMIC UTRS 

Aside from predicted stability, we next sought 

to evaluate the diversity of generated 3’ UTRs 

for all methods. Diversity of generated designs 

is particularly important for two reasons:  

1.​ A set of diverse candidate sequences may 

have a higher chance of yielding a subset 

that translates from in vitro screens to 

animal models, as the underlying sequence 

features driving stability and expression 

may also be more diverse. 
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Figure 6. Predicted stability of generated 3’ UTRs using four methods. mDD (no guidance) does not use Delphi 

to guide designs. mDD+SVDD, mDD fine-tuned + SVDD, and Genetic Alg (Genetic algorithm) methods use Delphi to 

guide designs of stable 3’ UTR sequences. mDD only pre-trains on genomic mRNA sequences, while mDD fine-tuned was 

further trained on in vitro validated stable synthetic 3’ UTRs. Train includes predictions for all training data used to train 

Delphi. Predicted stability was evaluated using an additional oracle trained with a different architecture than Delphi to avoid 

over-estimating the stability of UTRs that were hyperoptimized to Delphi’s parameters. Significance was calculated using a 

one-sided Mann-Whitney test. 
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2.​ Experimental validation of diverse and 

novel designs will assist the next iteration of 

model training more than highly similar 

designs, which may result in the model 

converging too quickly to local optima 

during design, missing interesting areas of 

the sequence space that could be explored 

[12]. 

To evaluate (1), we analyzed the diversity of 

generated 3’ UTRs, computed using the Vendi 

Score [13] on k-mers of length 6. We found that 

regardless of the algorithm chosen for design, 

3’ UTRs generated using mDD-0 had 

significantly higher diversity than sequences 

generated with a genetic algorithm (Figure 7A).  

We additionally used mmseqs to compute the 

number of unique clusters in each group of 

generated 3’ UTRs printed in (Figure 7A). We 

find that 3’ UTRs generated with mDD-0 have 

the highest number of clusters, when 

normalized for the total number of sequences 

in each group. Generated sequences with a 

genetic algorithm consisted of only 525 unique 
clusters out of a total of 20,000 sequences (0.026 
cluster fraction), with the biggest cluster 
containing 1313 sequences. In contrast,  mDD-0 

generated UTRs contained high clustering 

diversity (>0.99 mmseqs cluster fraction).  

These clustering metrics indicate superior 

diversity of 3’ UTRs generated with mDD-0. 

To assess diversity for (2), we computed the 

overall diversity of designed sequences when 

combined with the training data for Delphi. This 

metric gives us a relative idea of how adding 

generated 3’ UTRs to our existing mRNA 

stability training data would increase or 
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Figure 7. Vendi score, a metric of diversity, computed using 6-mer features from 3’ UTRs. Lower scores indicate 

lower diversity. (A) Vendi score of 3’ UTRs generated using four design methods. As a control, we include the diversity of 

genomic 3’ UTRs from Delphi training data. Each bar is labeled with the number of clusters identified using mmseqs, 

normalized for the total number of sequences in each group (mmseqs unique). (B) Similar to (A), but combining each 

sequence set with a representative mmseqs subsampled set of the Delphi stability training data. 
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decrease diversity for training our next iteration 

of models. As a control, we compute the 

diversity of adding distinct mmseqs clustered 

genomic sequences to the reference train set, 

which maintains the highest overall Vendi 

diversity (Figure 7B). We found that 3’ UTRs 

designed with a genetic algorithm decreased 

the overall diversity more than 3’ UTRs 

generated using mDD-0 (Figure 7B). We 

additionally observe lower diversity of UTRs 

generated with the fine-tuned mDD-0 model, 

suggesting convergence of generated 

sequences to a subset of the training data used 

to train Delphi (Green, Figure 7B). 

Figure 8 visually demonstrates the sequence 

space searched by both the genetic algorithm 

and SVDD run with mDD-0 fine-tuned on 

synthetic 3’ UTRs. We collected model 

embeddings from Delphi for a representative 

set of training data and for generated 3’ UTRs. 

Figure 8 visually demonstrates the vast 

sequence space that SVDD searches when 

compared to a genetic algorithm and the 

original training data. 

Together, these results suggest the superiority 

of sequences generated with mDD-0 in terms 

of (1) diverse candidate generation and (2) 

diversity from the training set, when compared 

to a genetic algorithm. 

mDD-0 GENERATED 3’ UTRS HAVE 
SIMILAR SEQUENCE FEATURES TO DELPHI 
TRAINING DATA 
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Figure 8. Principal component analysis (PCA) of 3’ UTRs. PCA was run on model embeddings collected using 

Delphi. The first two components are visualized. (A) PCA of a representative subset of 3’ UTRs used to train Delphi. UTRs 

are colored by measured z-score normalized half-lives. (B) PCA of UTRs generated with a genetic algorithm. UTRs are 

colored by predicted z-score normalized half-lives. Grey points represent training data. (C) PCA of UTRs generated with 

SVDD and mDD-0 fine-tuned on synthetic 3’ UTRs. UTRs are colored by predicted z-score normalized half-lives. 
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We next wanted to understand whether any of 

our methods for generating 3’ UTRs had a 

tendency to generate functionally disrupted 

UTRs that may not transfer experimentally. To 

assess this in silico, we sought to measure how 

different generated UTRs were from the 

experimentally validated training data that was 

used to train Delphi. Similar to work from [14], 

we train XGBoost classifiers to empirically test 

whether generated UTRs can be discriminated 

from a sampled subset of sequences from the 

Delphi training set (the reference set). As a 

control, we include a non-overlapping sample 

of 3’ UTRs from the train set that should be 

non-differentiable from the reference set.  

Figure 9 demonstrates that 3’ UTRs generated 

using mDD-0 fine-tuned on synthetic data are 

the hardest to differentiate from a 

representative set of the 3’ UTRs used to train 

Delphi (Figure 9, auPRC = 0.73). As a control, 

we include a set of 3’ UTRs from the training 

set that were not included in the representative 

set, which are expected to be the hardest to 

differentiate from the representative set (Figure 

9, auPRC = 0.72). However, sequences 

designed with a genetic algorithm are the 

easiest to distinguish from the reference train 

set (auPRC = 0.93). While in silico metrics 

cannot replace experimental data, these 

preliminary metrics indicate the sequences 

designed using a genetic algorithm are further 

from the sequence distribution of measured 

stable 3’ UTRs, suggesting potential 

pathological 3’ UTRs.  

CONCLUSION 

Taken together, these results show that mDD-0 

can capture not just the general sequence 

features of genomic mRNA sequences, but can 

also be guided to design synthetic mRNA 

sequences that achieve desired properties for 

mRNA therapeutics.  
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Figure 9. xGBoost classifiers were trained on 

6-mers from generated 3’ UTRs and reference 3’ 

UTRs subsampled from Delphi training data. An 

xGBoost classifier was trained to classify sequences as 

“generated” or “from the reference set” for each set of 

generated sequences. A held-out set of 3’ UTRs was 

used to evaluate the auPRC of the classifier’s ability to 

differentiate between generated and reference 3’ UTRs. 

Higher auPRC indicates larger representations of 

sequences features that differentiate generated and 

reference 3’ UTRs, suggesting a deviation between 

sequence distributions. 
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We have seen that mDD-0 fine-tuned on 

synthetic data is able to generate 3’ UTRs with 

high predicted stability. When compared to a 

genetic algorithm, these sequences are (1) 

more diverse, (2) maintain higher diversity when 

added to a train set for future design iterations, 

and (3) are less differentiable from the training 

set.  

While these results demonstrate optimized 

design of the 3’ UTR using a predictive oracle 

trained on a specific payload, SVDD and 

mDD-0 can be easily extended to all 

components of the mRNA sequence. When 

coupled with Ginkgo data generation 

capabilities, we can construct predictive 

models of mRNA stability, translation rate, and 

protein expression that are specific to your 

payload of interest and use these models to 

guide the design of mRNA sequences with 

mDD-0. 

Access to mDD-0 trained on genomic data is 

available through the Ginkgo Model API. Sign 

up for our API here. Read the documentation 

for using mDD-0 with the Ginko API here. To 

learn more about Ginkgo’s newest mRNA 

diffusion model trained on both genomic and 

proprietary synthetic data, contact us today. 
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