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INTRODUCTION

Programmable gene expression is essential for

the design of many engineered biological

systems. Applications in gene therapy and

biologics manufacturing, among many others,

depend on our ability to express a target gene

in the right cell type at the right level. Today,

much of the biotech industry depends on a

small number of widely used legacy promoters,

many of which have never been systematically

optimized for purpose, that offer little sequence

variety and often fall short of desired tissue

specificity.

The emergence of large DNA foundational

models presents an opportunity to revolutionize

promoter design. Here, we describe

Promoter-0, an AI framework capable of

modeling tunable and tissue-specific

promoters. Our approach builds on Borzoi, a

sequence-based machine learning model that

learns to predict RNA-seq coverage from DNA

sequence [1]. Using Ginkgo’s high-throughput

screening platform, we collected tens of

thousands of data points to validate and

expand this framework.

Promoter-0 can predict promoter activity

across diverse cell and tissue types without

requiring additional model fine-tuning.

Remarkably, zero-shot predictions from

Promoter-0 perform comparably to standard

models trained with labeled data in some

settings. To the best of our knowledge, this

represents the first demonstration of direct

prediction of context-specific expression of a

synthetic expression cassette, an important

practical milestone in promoter design.

A simple, direct-prediction tool for gene

expression has the potential to streamline many

DNA design tasks. We envision two broad

applications of Promoter-0.

1) Rational promoter design. Using

Promoter-0 can allow engineers to select

promoters that are more likely to achieve a

desired expression level in a desired cell type.

We show our model's ability to do so with

commonly used promoters.
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2) Iterative promoter optimization. For

high-performance applications requiring

multiple rounds of design-build-test,

Promoter-0 can generate a balanced and

diverse library of candidate promoters and

enable more informative iterations. We

demonstrate the ability of Promoter-0 to predict

the activity of diverse sets of candidate

promoters.

Access Promoter-0 is available through the

Ginkgo Model API. You can read additional

documentation or follow this Google Colab

notebook for a demonstration of usage.

A PROMPT ENGINEERING STRATEGY TO
CAPTURE PROMOTER ACTIVITY IN
CONTEXT

The Borzoi model released by Calico Labs in

2023 predicts genomic readouts (gene

expression level, chromatin accessibility,

transcription factor binding strength, etc) in

both human donor tissues and cell lines. We

hypothesized that Borzoi's learned

representations of DNA sequences in different

tissue contexts would be similarly useful for

predicting the activity of engineered promoter

sequences.

But before we could use Borzoi as a model for

promoter activity, we had to adapt the

promoter DNA sequences to match Borzoi's

input requirements. Borzoi is trained with very

long sequence inputs, 524 kilobases, to
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FIGURE 1. Overview of Promoter-0, a Borzoi-based promoter activity prediction framework. During prompt

engineering, a short-expression cassette, including the promoter of interest, is embedded in 100-1000 random sites in a

much larger DNA sequence. During Borzoi inference, the Borzoi model is applied to the longer sequence to predict various

biochemical features, including promoter activity. In post-processing, the predicted promoter activities for each copy of the

embedded cassette are averaged to produce a context-independent predicted activity.
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capture extensive genomic context. We were

interested in much shorter constructs: a typical

promoter + payload combination is only about

1000-3000 bases long.

To bridge this gap, we took inspiration from

TRIP (Thousands of Reporters Integrated in

Parallel) experiments [2]. In TRIP experiments,

identical promoters are randomly integrated

throughout a host genome. By measuring the

activity of the same construct across many

different random insertions, TRIP experiments

effectively average out the effect of any

particular insertion site.

Promoter-0 uses a prompt engineering

framework to similarly embed short expression

cassettes into long stretches of genomic DNA

(Fig. 1). It randomly selects 100 - 1000 insertion

sites, runs Borzoi inference, and calculates an

average activity prediction for the cell types of

interest.

TESTING PROMOTER-0 AGAINST
CLINICALLY RELEVANT PROMOTER
MEASUREMENTS

We evaluated Promoter-0's predictive

capabilities for 20 clinically relevant promoters

in four selected cell lines: HepG2, Hek293T,

A549, and iPSC-derived cardiomyocytes

(heart). The test data was generated using

MPRA (Massively Parallel Reporter Assays)

onboarded on Ginkgo’s high-throughput

screening platform. The model robustly

predicted the activity of the 20 promoters

across different cell lines (Average Spearman ρ:

0.77, Average Pearson r: 0.72, Fig. 2).

Given that Borzoi was trained using genomic

data, we considered that it might be less

effective for synthetic or viral promoters. We

labeled each promoter with its origin, and to

our surprise, we observed no strong bias

against viral or synthetic promoters.
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FIGURE 2. Promoter-0 enables the
prediction of commonly used promoter
activities in multiple cell types.
Scatterplot showing the predicted
promoter activity (processed from Borzoi
DNase-seq tracks) vs. measured MPRA
activity for 20 clinically relevant promoters
in HepG2, iPSC-derived cardiomyocytes
(heart), A549, and Hek293 cells.
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The test set included promoters with known

cell-type specific activity profiles: three

muscle/cardio-specific promoters, two

liver-specific promoters, six ubiquitous

promoters, and promoters targeting other cell

contexts. Promoter-0 successfully recapitulated

these established tissue specificities (Fig. 3).

Muscle-specific and liver-specific promoters

had higher predicted expression in the correct

contexts. In contrast, promoters targeting other

tissues are largely inactive in these cell lines.

BENCHMARKING PROMOTER-0 WITH
MASSIVELY PARALLEL REPORTER ASSAY
(MPRA) DATA

Next, we assessed the framework's capacity to

predict promoter activity in large MPRA

datasets. MPRA experiments provide 103 – 105

parallel measurements of gene expression in

specific cellular contexts. These datasets

traditionally serve two purposes: building

mechanistic models of gene regulation and

powering ML-guided optimization of regulatory

sequences [3,4]. However, a significant

limitation persists with MPRAs: large-scale

experimental data generation is limited to

immortalized cell lines or highly restricted in

vivo contexts. Our framework addresses this

limitation by making use of genomic training

data from a variety of cell lines, primary cells,

and human tissues.

To compare Promoter-0's performance with

that of models trained on MPRA datasets, we

curated ~1.4 M sequence-regulatory activity

pairs in HepG2 cells from public and internal

sources. To minimize potential data leakage,

we clustered the sequences using mmseq2 [5].
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FIGURE 3. The Borzoi-based framework accurately predicts known cell type-specific promoter activity. Heatmap

showing the predicted promoter activities (processed from Borzoi DNase-seq tracks) for commonly used promoters

grouped by their intended target cell lines.
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Following clustering, we partitioned the dataset

into training, validation, and test subsets using

an 80:10:10 split. We used the hyenaDNA [6]

model architecture with a multilayer perceptron

(MLP) output layer to establish the trained

model benchmarks and initialize the training

with random and pre-trained weights.

We trained two versions of hyenaDNA: one with

random weights and another pre-trained on the

human genome. Both versions were then

finetuned using MPRA data. We used the

trained models to predict the held-out test set

(10% of the total dataset, 140K sequences).

Comparing the MPRA-trained models with

Promoter-0, we found Promoter-0 to

underperform only slightly (Table 1).

Model
Spearman

ρ
Pearson

r

HyenaDNA
(random

initialization)
0.47 0.50

HyenaDNA
(pre-trained)

0.44 0.48

Promoter-0 0.31 0.41

Table 1. Promoter-0 predicts MPRA data

comparably to HyenaDNA models trained with MPRA

datasets. Correlations are between model-predicted

activities and promoter measurements MPRA datasets.

HyenaDNA models were initialized with random weights

or pre-trained on human genomic DNA, then finetuned

using 80% of the MPRA dataset. Promoter-0 and

HyenaDNA inference were performed on the same test

dataset.

We also benchmarked against recent work by

Tang and Koo (2024) [7] using genomic

language models to predict regulatory element

activities. That study trained several

foundational models and a CNN using a

dataset containing ~120K regulatory elements

measured in HepG2 and K562 cells [8].

Following the evaluation procedure established

by Tang and Koo, we randomly selected ~12K

sequences for testing with Promoter-0. Our

model performed comparably to Tang and

Koo's HyenaDNA MLP model but was

outperformed by their CNN (Table 2). In this

case, the superior performance of the CNN

could be due to the random split of the training

and test data sets. In contrast, Promoter-0 had

no previous exposure to similar sequences’

regulatory activity.

Cell Line Method Pearson r

K562

HyenaDNA-MLP 0.46

CNN 0.71

Promoter-0 0.5

HepG2

HyenaDNA-MLP 0.36

CNN 0.65

Promoter-0 0.37
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Table 2. The Borzoi-based direct-prediction

framework outperforms some supervised training

settings on a Lenti-MPRA dataset. Correlations for

HyenaDNA with an MLP layer and custom CNN were

from Tang and Koo[5]. Correlations for Promoter-0 were

calculated using a random subset of 10% of the

lendiMPRA data from Agarwal et al. [6].

PREDICTING PROMOTER ACTIVITY IN
DATASETS FROM REAL R&D PROJECTS

Next, we evaluated Promoter-0 on smaller

MPRA datasets generated using specific

design strategies. Data of this format most

resembles promoter engineering campaigns in

real-world R&D projects. Iterative promoter

design campaigns often begin with a set of

candidate natural genomic promoters,

systematically measuring and varying their

sequences to achieve a desired gene

expression target.

We focused on high-quality MPRA datasets

that investigated short core promoters (Hong &

Cohen, 2022 [9]), mid-sized genomic promoters

(Ginkgo-internal project data), and synthetically

designed promoters using transcription factor

binding motifs (Ginkgo-internal data).

Promoter-0 performed consistently at this

practical DNA design task (Table 3).

PREDICTING THE EFFECTS OF SEQUENCE
VARIATION AT SINGLE-BASE RESOLUTION

Lastly, we used Promoter-0 to analyze

saturation mutagenesis datasets in which each

base pair of a regulatory sequence is

systematically mutated to all three alternative

nucleotides to create a comprehensive map of

sequence-function relationships. These

represent a particularly stringent test because

they require the Borzoi-based model to

determine the effect of a single base pair

change across more than 500 kb of sequence

context.
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Dataset Spearman
ρ

Pearson
r

# of
datapoints

Length Cell line

Hong et al. [7] 0.53 0.57 670 80 K562

Genomic (internal) 0.71 0.58 2000 230 HepG2

Synthetic (internal) 0.64 0.64 1000 200 HepG2

Table 3. Promoter-0 performance on smaller datasets resembling real promoter design R&D projects.

Correlations were calculated for all three MPRA datasets between the measured promoter activity and the predicted

promoter activity using DNase-seq tracks.
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We focused on two clinically relevant

promoters measured in the HepG2 cell line: the

coagulation factor IX (F9) promoter, crucial for

blood clotting disorders, and the low-density

lipoprotein receptor (LDLR) promoter, essential

for cholesterol metabolism [10].

To establish a performance baseline, we used

the HyenaDNA model trained with 1.4 M MPRA

data points to predict the variant effects.

Promoter-0 showed similar performance and

superior generalizability compared to the

supervised approach (Table 4).

Dataset Method ρ r

F9
HyenaDNA 0.27 0.4

Promoter-0 0.31 0.35

LDLR
HyenaDNA 0.22 0.29

Promoter-0 0.48 0.53

Table 4. Performance evaluation of Promoter-0

on saturation mutagenesis datasets. The correlation

coefficients (Spearman's ρ and Pearson's r) were

calculated using mutation scanning experiments of the

F9 and LDLR promoters. The predicted activity

measurements were the DNase-seq tracks from

HepG2 cells.

CONCLUSIONS

Genomic foundation models like Borzoi can

learn key features of gene regulation across

large segments (>500 kb) of genomic DNA. The

results from Promoter-0 show that the Borzoi

model can be effectively generalized to predict

the activity of much smaller engineered

promoter sequences (1000-3000 bp)

independently from their larger genomic

context.

Promoter-0 offers a direct route for estimating

promoter activity, even without laboratory

measurements. In some cases, the direct

prediction may allow biotech R&D teams to

identify promoters with desired activity profiles

and use them immediately in engineered

biological systems. However, for many

demanding biotech R&D applications, it is

unlikely the direct predictions of Promoter-0 will

be precise enough to enable purely in silico

DNA designs.

We anticipate that a more common use case

for generative AI in promoter engineering will

be to provide a well-balanced library of

candidates for wet lab characterization and

subsequent AI-driven iterative design

improvement.

Promoter-0 can offer more efficient and

informative DNA designs, allowing R&D teams

to iterate toward high-performance promoters

more quickly. To learn more, read the

documentation for Promoter-0 or sign up for

the API at models.ginkgobioworks.ai.
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