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ABSTRACT
The COVID- 19 pandemic has focused attention on 
patterns of infectious disease spillover. Climate and land- 
use changes are predicted to increase the frequency of 
zoonotic spillover events, which have been the cause 
of most modern epidemics. Characterising historical 
trends in zoonotic spillover can provide insights into the 
expected frequency and severity of future epidemics, 
but historical epidemiological data remains largely 
fragmented and difficult to analyse. We utilised our 
extensive epidemiological database to analyse a specific 
subset of high- consequence zoonotic spillover events for 
trends in the annual frequency and severity of outbreaks. 
Our analysis, which excludes the ongoing SARS- CoV- 2 
pandemic, shows that the number of spillover events 
and reported deaths have been increasing by 4.98% 
(confidence interval [CI]95% [3.22%; 6.76%]) and 8.7% (CI 
95% [4.06%; 13.62%]) annually, respectively. This trend 
can be altered by concerted global efforts to improve our 
capacity to prevent and contain outbreaks. Such efforts 
are needed to address this large and growing risk to global 
health.

INTRODUCTION
The impact of COVID- 19 and other contem-
porary epidemics on human health and live-
lihoods has highlighted the need to better 
understand trends in infectious disease spill-
over. Zoonotic viral pathogens cause most 
modern epidemics,1 as they jump from wildlife 
or domesticated animals to humans through 
hunting, habitat encroachment, and intensive 
livestock farming2–4 among other activities. 
Climate change and other forms of anthro-
pogenic environmental change are predicted 
to increase the frequency of zoonotic spill-
over events,5 while increasing human popu-
lation density and connectivity facilitate the 
spread of the outbreaks that occur.6 Yet there 
is limited empirical data on the frequency of 
zoonotic spillover and its variability over time, 

which makes it challenging to determine its 
implications for global health.

Although historical trends in zoonotic spill-
over can provide insights to the expected 
frequency and severity of future epidemics, 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ The devastating impact of contemporary zoonotic 
spillover- driven epidemics, such as COVID, on hu-
man health and livelihoods has highlighted the need 
to better understand trends in infectious disease 
spillover.

 ⇒ Although the frequency of spillover- driven epidemics 
is predicted to increase as a result of human- driven 
climate and environmental change, the magnitude 
of its implications for global health in the future is 
difficult to characterise given the limited empirical 
data on the frequency of zoonotic spillover, and its 
variability over time.

WHAT THIS STUDY ADDS
 ⇒ This study draws on an extensive epidemiological 
database to examine a specific subset of zoonotic 
spillover events for trends in the frequency and se-
verity of outbreaks.

 ⇒ We find the number of outbreaks and deaths caused 
collectively by this subset of pathogens (SARS 
Coronavirus 1, Filoviruses, Machupo virus, and 
Nipah virus) have been increasing at an exponential 
rate from 1963 to 2019.

 ⇒ If the trend observed in this study continues, we 
would expect these pathogens to cause four times 
the number of spillover events and 12 times the 
number of deaths in 2050, compared with 2020.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ This study suggests the series of recent impactful 
spillover- driven epidemics are not random anoma-
lies, but follow a multi- decade trend in which epi-
demics have become both larger and more frequent.

 ⇒ These findings provide additional evidence that con-
certed global efforts to improve our capacity to pre-
vent and contain outbreaks are urgently needed to 
address this large and growing risk to global health.
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the data required to characterise these trends remains 
fragmented, making analysis of long- term trends difficult 
(but see Marani et al, and Jones et al7 8). In this study, 
we leverage our extensive epidemiological database9 10 to 
examine a specific subset of zoonotic spillover events for 
trends in the frequency and severity of outbreaks. This 
database covers epidemics reported by the WHO in the 
form of Disease Outbreak News reports (WHO DON), 
outbreaks occurring since 1963 that were caused by a 
viral pathogen that resulted in 50 or more deaths, and 
historically significant outbreaks such as the 1918 and 
1957 influenza pandemics.

Emerging zoonotic viruses that subsequently spread 
from human to human are the focus of this anal-
ysis because they were the cause of most 20th century 
pandemics, and account for 60% of all emerging human 
diseases.8 After applying specific exclusion criteria 
(table 1) intended to limit the impact of surveillance 
bias on possible increasing trends in outbreak frequency 
and severity, we specifically focus our analysis on Filovi-
ruses (Ebolavirus, Marburg virus), SARS Coronavirus 1, 
Nipah virus, and Machupo virus. These pathogens are of 
high- consequence, defined here as the potential to pose 
a significant risk to public health, economic, or political 
stability.

METHODS
We drew on a historical database of over 3150 outbreaks 
and epidemics,9 assembled according to the practices 
outlined in Badker et al10 (also see online supplemental 
methods, which describe the data collection process) to 
analyse the temporal trend in the number of outbreaks 
and number of deaths caused by the selected emerging 
zoonotic viral pathogens which met the described 
criteria. We chose the number of deaths associated with 
an outbreak as a measure of outbreak severity because 
death data are typically more reliably reported than case 
count data, as asymptomatic or under- ascertained cases 
are not usually included in official case counts11 and data 
on hospitalisations is often unavailable. The database has 
global coverage of infectious disease events from 1963 to 
the present; we focused on the time period from 1963 to 
2019 for this analysis.

To model the temporal trend in the annual number 
of outbreaks and number of reported deaths, we fitted 
Poisson and negative binomial models and compared 
model fit using the Akaike information criterion (AIC). 
A negative binomial model was explored in addition to 
the Poisson because of the overdispersion in the data12 
owing to many years of zero outbreaks or deaths, coupled 
with fewer years of large mortality events during the study 
period. All data and code used to perform this analysis 

Table 1 Pathogen exclusion criteria

To remove noise and address potential confounding driven by changes in outbreak detection capacity over time, we 
applied strict exclusion criteria to the viral zoonotic pathogens in our epidemiological database (online supplemental 
table 1). This box shows the exclusion criteria applied to viruses in the epidemiological database, the rationale for 
each exclusion criterion, and examples of viruses that were excluded based on each criterion. Note that pathogens 
may be excluded by multiple criteria.

Exclusion criterion Rationale Exclusion examples

Has caused 100 or more 
annual cases for five 
consecutive years

Reporting effort for endemic pathogens varies substantially by 
country and throughout time, with endemic diseases in low- income 
countries often being significantly underreported.25 Advances in 
public health capacity, surveillance technology, and surveillance effort 
over time could show an increase in outbreaks and deaths caused by 
these pathogens without a true increase in their occurrence.

MERS Coronavirus, 
Lassa virus, Monkeypox 
virus, Hantavirus

Fewer than 50 reported 
deaths

Pathogens that have caused minimal human mortality are generally 
not prioritised for diagnostic testing development and surveillance. 
These pathogens are more likely to go undetected; however, 
advances in healthcare and diagnostic technology are likely to 
increase the probability of detecting a spillover event over time. This 
criterion also excludes most non- vector- borne pathogens that have 
no documented human- to- human transmission, as the focus of this 
study is on pathogens that may cause significant epidemics.

Hendra virus, Lujo virus, 
Whitewater Arroyo virus

Vector- borne The mechanism of spillover for vector- borne pathogens is different 
from non- vector- borne pathogens and may be influenced by different 
factors. Additionally, vector control/eradication programmes are likely 
to influence the frequency and severity of vector- borne pathogen 
spillover events.

Venezuelan equine 
encephalitis, Crimean- 
Congo haemorrhagic 
fever virus, Zika virus

Influenza There are specifically targeted influenza surveillance programmes that 
have increased significantly over the time period being analysed,26 
which could confound any temporal increase seen in spillover events 
or number of deaths.

2009 H1N1 pandemic
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are available in our data and code repository (https:// 
github.com/concentricbyginkgo/zoonotic_spillover_ 
trend).

Surveillance bias poses a central challenge to assessing 
the rate of disease spillover from one period of time to 
another: an increasing trend may simply reflect stronger 
capacity to identify and report spillover events. There are 
no robust, direct measures of global reporting capacity 
and effort which can be taken into account, and only 
limited proxy measures (eg Jones et al,8).

To address potential sources of bias, we applied exclu-
sion criteria to identify pathogens and outbreak types 
which are less likely to be confounded by changes in 
reporting (table 1). We focused on viruses that spill over 
directly from the wildlife host to humans. Since endemic 
viruses or those that spill over frequently are not the focus 
of this study, we excluded any viruses which had caused 
100 or more cases annually for five or more consecu-
tive years. This criterion mainly led to the exclusion of 
endemic viruses that have been known long before this 
study period (eg, Hantaviruses and Lassa virus), but were 
not named and reported until the study period.13 14

Additionally, to limit the inclusion of rare and/or inci-
dentally discovered non- pathogenic viruses, we included 
only viruses that have caused a total of 50 or more human 
deaths. This criterion screens out viruses that are likely to 
be detected now, but may have been missed in previous 
decades due to poorer diagnostic technology.

Influenza and vector- borne pathogens were also 
excluded, due to significant differences in disease 
emergence and reporting patterns which include large, 
specifically targeted surveillance programmes that 
have increased significantly over the time period being 
analysed.

The viruses that were included in this analysis were 
epidemic Filoviruses (Ebola, Marburg), SARS Corona-
virus 1, Nipah virus, and Machupo virus. We considered 
all known zoonotic viruses within the 25 high- priority viral 
families as designated by the Global Virome Project.15 
If the virus was not represented in our epidemiological 
database,9 we performed an additional literature search 
to determine if it met the inclusion criteria. Viruses 
considered, their respective scores on these criteria, and 
corresponding references are listed in online supple-
mental table 1. The narrow inclusion criteria we applied 
mitigate the concern of surveillance bias conflating 

temporal effects on the number of events, and focus on 
viruses with a similar spillover ecology.

As the COVID- 19 pandemic was ongoing at the time of 
analysis, we excluded this datapoint from the trend anal-
ysis. Since the COVID- 19 pandemic death toll is many 
orders of magnitude larger than the other data points, it 
is likely to be influential on the analysis. By omitting this 
data point from the analysis, we can show a significant 
increasing trend before its occurrence.

Patient and public involvement
Neither patients nor the public were involved in this 
study.

RESULTS
For the viruses that met our inclusion criteria, we identi-
fied a total of 75 spillover events occurring in 24 countries 
from 1963 to 2019, causing a total of 17 232 deaths from 
1963 to 2019 (table 2; figure 1). Events were defined as 
epidemiologically linked cases or as defined in the orig-
inal source.

We used the negative binomial model to fit the histor-
ical trend in reported outbreaks and reported deaths. 
Although AIC showed a similar fit of the negative bino-
mial and Poisson models to the number of reported 
outbreaks, it supported the use of the negative bino-
mial over the Poisson for reported deaths (table 3). For 
consistency, we chose to use the negative binomial model 
for both outcomes despite the similar fit of the negative 
binomial and Poisson models for the number of reported 
spillover events. The model results show a significant 
annual increase in the number of reported outbreaks 
and reported deaths caused by the selected viral zoonotic 
pathogens (table 3).

The fitted negative binomial models estimate that 
the number of reported outbreaks has been increasing 
by 4.98% (CI95%[3.22%; 6.76%]) annually, while the 
number of reported deaths has been increasing by 8.7% 
(CI95%[4.06%; 13.62%]) annually (figure 2). If these 
annual rates of increase continue, we would expect the 
analysed pathogens to cause four times the number of 
spillover events and 12 times the number of deaths in 
2050 than in 2020.

The outlier point present in figure 2 corresponds 
to the West Africa Ebola outbreak, which is a high 

Table 2 Number of outbreaks and deaths caused by the selected viruses from 1963 to 2019.

Virus group Viruses Outbreaks Deaths Main continent(s) impacted

Filoviruses Marburg virus,
Ebolaviruses

40 15 771 Africa

Epidemic coronaviruses SARS Coronavirus 1 
(SARS- CoV- 1)

2 922 Asia

Other Machupo virus, Nipah 
virus

33 529 South America (Machupo virus), 
Asia (Nipah virus)
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leverage point in the time series. Exclusion of this event 
still results in a significant, although smaller, increasing 
trend in annual deaths (5.13% annual increase; 
p=0.009).

DISCUSSION
We found the number of outbreaks and deaths caused 
by SARS Coronavirus 1, Filoviruses, Machupo virus, and 
Nipah virus have been increasing at an exponential rate 
from 1963 to 2019. This finding supports other studies 
that have found significant increases in the frequency of 
emerging infectious disease outbreaks,1 8 16 and further 
suggests that outbreaks are becoming more severe. If 
the trend we observe in this study continues, we would 
expect to see these pathogens cause four times the 
number of spillover events and 12 times the number 
of deaths in 2050, compared with 2020. We believe this 
is a conservative estimate for two main reasons: 1) we 
applied strict inclusion criteria for pathogens in this 
analysis, resulting in a trend that is less likely to be 
an artefact of advances in surveillance and detection 
capacity over the study period; and 2) we omitted the 
ongoing COVID- 19 pandemic, which is several orders 
of magnitude larger than other events, from the trend 
analysis (see online supplemental data).

Our evaluation of the historical evidence suggests 
that the series of recent epidemics sparked by zoonotic 
spillover are not an aberration or random cluster, but 
follow a multi- decade trend in which spillover- driven 
epidemics have become both larger and more frequent. 

The continuation of this trend would represent a poten-
tially large increase in global infectious disease risk 
and burden in terms of loss to human health and live-
lihoods. However, actions can be taken to disrupt this 
trend, including by rallying global efforts to improve 
capacity to prevent and contain outbreaks. Recent 
proposals have ranged widely, from establishing systems 
for disaster risk financing to fund response measures;17 
creating an intergovernmental panel on pandemic risk 
to quantify, track, and assess risk over time;18 addressing 
the drivers of pandemic risk, including deforestation 
and climate change;5 6 and advancing the technology and 
infrastructure needed to detect and respond to public 
health threats19; including surveillance programmes at 
key sentinel nodes, using a mixture of active and passive 
surveillance modalities and tools.

Some of these proposals, particularly in the area of 
advancing infrastructure and technology, have been 
successfully implemented in response to COVID- 19. 
For example, rapid development of messenger RNA 
vaccines,20 21 implementation of focused surveillance 
at key travel hubs22 and congregate settings such as 
schools and universities23 using passive wastewater 
testing and active testing, and genomic surveillance 
to detect emerging variants24 have all demonstrated 
immense value in improving resiliency to public health 
threats. The ultimate package of measures to support 
global prevention, preparedness, and resilience is not 
yet clear. What is clear, however, from the historical 
trends, is that urgent action is needed to address a large 
and growing risk to global health.

Figure 1 The proportion of the 75 included spillover events caused by Ebolaviruses, Marburg virus, SARS Coronavirus, Nipah 
virus, and Machupo virus, by country. Countries are shaded by proportion of spillover events; unshaded countries have no 
documented spillover of the included pathogens.

Table 3 Model comparison of Poisson and negative binomial models.

Outcome Model form Estimate SE P AIC

Reported outbreaks Poisson 0.0479 0.0083 <0.001 153.35

Negative binomial 0.0486 0.0086 <0.001 155.17

Reported deaths Poisson 0.110 0.0009 <0.001 62 430.1

Negative binomial 0.0838 0.0224 <0.001 457.1

AIC, Akaike information criterion; P, P- value; SE, standard error.
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